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Fate of the Beowulf

computing for the masses

. slightly different audience
than the National Labs and
largest Universities
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Computational Science

@ in addition to experimental and theoretical branches of
science, computational science is now crucial to nearly
every discipline
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Computational Science

@ in addition to experimental and theoretical branches of
science, computational science is now crucial to nearly
every discipline

@ however...

@ science is limited by the power of the instrument

e the rate-of-discovery is tightly coupled to the
rate-of-computation
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Beowulf

@ Beowulf-style parallel computing couples
e Commodity Off-The-Shelf (COTS) hardware
@ Open Source software (GNU, Linux, MPI, etc.)

@ with help from Moore’s Law, this approach has come to
dominate the high-end computing; consider TOP500 list
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Beowulf

@ Beowulf-style parallel computing couples
o Commodity Off-The-Shelf (COTS) hardware
@ Open Source software (GNU, Linux, MPI, etc.)
@ with help from Moore’s Law, this approach has come to
dominate the high-end computing; consider TOP500 list
@ 80% are “clusters”
@ 57% use Gigabit Ethernet
@ 85% use Linux
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Scaling Beowulf

@ to improve the rate-of-computation

@ use faster nodes
@ buy more nodes
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Scaling Beowulf

@ to improve the rate-of-computation
e use faster nodes
@ buy more nodes

@ however, to make it on the list ...

@ 960 nodes (six 42U racks) Num. 474
e 1200 processors (10 racks) Num. 486
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Scaling Beowulf

@ to improve the rate-of-computation

@ use faster nodes
@ buy more nodes

@ however, to make it on the list ...
@ 960 nodes (six 42U racks) Num. 474
e 1200 processors (10 racks) Num. 486

@ multi-core/many-core to the rescue! except:
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(same with disk I/O bandwidth)
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Fate of the Beowulf

Moore’s Law will march on, but the technology trends are not
positive
@ memory bandwidth, latency are not improving
e it is a packaging problem (no more pins)
@ 70ns for 64 Mb SDRAM in 1994;
30-60ns for 2Gb SDRAM in 2007
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Fate of the Beowulf

Moore’s Law will march on, but the technology trends are not
positive
@ memory bandwidth, latency are not improving
e it is a packaging problem (no more pins)
e 70ns for 64 Mb SDRAM in 1994;
30-60ns for 2Gb SDRAM in 2007
@ power density

@ not every scientist has 5 MW in his/her machine room
@ 400-500W power supplies are common
e 100W/sqgft (no floor/ceiling air)
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Fate of the Beowulf

Moore’s Law will march on, but the technology trends are not
positive
@ memory bandwidth, latency are not improving
e it is a packaging problem (no more pins)
e 70ns for 64 Mb SDRAM in 1994;
30-60ns for 2Gb SDRAM in 2007
@ power density

@ not every scientist has 5 MW in his/her machine room
@ 400-500W power supplies are common
e 100W/sqgft (no floor/ceiling air)

@ size/mass

e building infrastructure
e physical distance between switch and node
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Concrete Evidence?
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Outline

*

\1 r The WILLIAM STATES LEE COLLEGE of ENGINEERING
N UNG

«O>» «Fr <

ae

9/1



Hypothesis

Hypothesis: A network of Platform FPGA
devices will scale to a PetaFLOP and be more
cost-effective than Beowulf-style Commodity
Clusters.
this is controversial...

@ FPGAs consume more power than ASICs or custom ICs

@ typically 10x slower clock frequency, 4x more area

@ communication costs torpedo many applications

@ programming model (850,000 programmers graduate each
year versus 80,000 hardware engineers!)
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Spirit. Reconfigurable Computing Cluster
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Spirit

to answer these questions,
Spirit, a small-scale model
was fabricated
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Spirit

to answer these questions,
Spirit, a small-scale model
was fabricated

@ 64 commodity developer
boards (Xilinx ML-410)
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Spirit

to answer these questions,
Spirit, a small-scale model
was fabricated
@ 64 commodity developer
boards (Xilinx ML-410)

@ custom network board
that with low-cost SATA
connectors/cables
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Spirit

to answer these questions,
Spirit, a small-scale model
was fabricated

@ 64 commodity developer =, -
boards (Xilinx ML-410) N

@ custom network board
that with low-cost SATA
connectors/cables

@ developed system
software for remote
access (power on/off,
JTAG, etc.)
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Organization

RCS Lab Network
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DEXP

@ many processes in nature exhibit an exponential decay
property
e molecular forces
e concentration gradients of protein in a gel
e other simulations
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DEXP

@ many processes in nature exhibit an exponential decay
property
@ molecular forces
e concentration gradients of protein in a gel
@ other simulations

@ hence, computational scientists make extensive use of e~
in computer simulations
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DEXP

@ many processes in nature exhibit an exponential decay
property
e molecular forces
e concentration gradients of protein in a gel
e other simulations
@ hence, computational scientists make extensive use of e~
in computer simulations
@ our goal: FPGA implementation of double-precision, IEEE

754 standard e~
(in FORTRAN this DEXP, hence the name)
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Overall Design
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Core Design
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Speed and Power

Throughput Measurements Power Measurements
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@ about 29 us for FPGA, 66 s on modern processor
@ < 20 W for FPGA system versus ~ 350 W (not measured)
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BLAST

@ BLAST is a bioinformatics application used by thousands
(hundred-thousands?) biologists every day
e hardware can be used to speed it up
e but it quickly becomes I/O bound problem (primary and
secondary storage)
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BLAST

@ BLAST is a bioinformatics application used by thousands
(hundred-thousands?) biologists every day
e hardware can be used to speed it up
e but it quickly becomes I/O bound problem (primary and
secondary storage)

@ our goal: scalable FPGA implementation scan (previously
NtWordFinder) and secondary storage subsystem to
scale 1/0O bandwidth
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BLAST Performance
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HWFS: Migrating Filesystem Operations into Logic

Application

Operating System

File System

SOFTWARE

Disk Drive Controller

Hard Disk

HARDWARE

Sector

Track
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HWFS: Base System and Implementation

| System Bus
Hardware
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Efficiency
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BLAS — Basic Linear Algebra Subroutines

@ BLAS (and its descendents) is a library often used by
scientists for dense matrix computations
e matrix-matrix multiplication
e matrix-vector multiplication
e inner product
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BLAS — Basic Linear Algebra Subroutines

@ BLAS (and its descendents) is a library often used by
scientists for dense matrix computations

e matrix-matrix multiplication
e matrix-vector multiplication
e inner product
@ our goal: show peak floating-point performance of our
devices; benchmark with High-Performance Linpack

@ experiments include single node tests and an MPI
application; largest matrix size: 14336 x 14336
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MAcc — Multiply/Accumulate Array
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Single Node MFLOPS for Various Matrix Sizes

Theoretical Peak: 6.4 GFLOPs
| Size “ MFLOPS | Speedup |
16 x 16 839.04 1
32 x 32 1431.02 1.71
64 x 64 2102.38 2.51
128 x 128 2726.64 3.25
256 x 256 3197.60 3.81
512 x 512 3498.54 417
1024 x 1024 || 3670.87 4.38
2048 x 2048 || 3763.60 4.49
4096 x 4096 || 3811.77 4.54
Measured Power: 90 MFLOPS/Watt
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Network Performance

@ theoretical

e 4 Gbps (error-free) per direction per link (lanes)
e 8 links per FPGA — so 64 Gbps in/out of node
e after 8B/10B encoding, 3.2 Gbps
e $120 (real cost) per NIC (switch is free)
@ measured hardware core-to-core
e about 95% of theoretical bandwidth with 16 KB messages
o 0.8 us chip-to-chip latency
e 0.08 us on-chip latency (just the crossbar)

@ measured (Linux) software process-to-process

e about 56% of theoretical for 16 KB message

e approaches 2.4-2.5 Gbps (80% of theoretical) for 1 MB
message

e 100 us chip-to-chip latency
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MPI Collective Communications

@ migrate latency sensitive User Application
A

User Application

operations e T !

@ reduce interrupts and ‘Ba"ie”;'g"”‘hm) ;
traversing OS/library etwore rotocay  Kemel Space os
interfaces Bam:m

@ hardware cores directly O

connected to network

On-chip Switch
(Network protocol)

Ethemnet Physical — A\ReN Network
Connection
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Barrier: Point-to-Point Communication in hardware

4-ary 2-cube torus (subcube of whole cluster); (a) Full-Radix
tree, (b) Linear tree, (c) Binary tree, (d) Star tree

L 4
A\ [/ 7/ic WILLIAM STATES LEE COLLEGE of ENGINEERING
N\\V/Z uNCCHARLOTTE 30/1



Barrier Results
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Spirit Summary

@ work-in-progress... but cards are falling right

@ absolute comparisons are difficult right now — Spirit is a
very small scale model

@ power numbers are excellent

o FPGA with MAcc array: 90 MFLOPS/Watt
o Desktop CPU (Opteron): 27 MFLOPS/Watt

@ network numbers are solid
@ will it work for a range of applications???

L 4
a\ r The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\\V/Z uNCCHARLOTTE 32/1

~—



Thanks to the People that Really Did the Work

@ Andy Schmidt

@ Will Kritikos

@ Robin P.

@ Shan Yuan Gao

@ Ashwin Mendon

@ Yamuna Rajasekhar
@ Sidd Datta
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Overview

Resilient
@ Webster: recovering readily from adversity

@ Presently: fault tolerance
@ Longview: performance degradation as well as fault
mitigation
e OS noise / OS jitter
e timing due to hardware RAS (hard drives, down clocking)
e result of checkpointing/restart software
My aim with the remainder of this talk is spur questions: Where
are there points of collaboration?
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Trends Going Forward

@ 65nm — 45nm — --- 32nm

o less tolerant, smaller target
e more susceptible

@ longer running simulations

@ higher component count machines

@ traditional techniques (TMR) not feasible

@ commodity components will incorporate
Reliability-Available-Serviceability (RAS)

Working Assumption: Every execution will have exceptional
events.
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Essential Question

How to prepare for an unpredictable, unreliable future with
today’s technology?

@ cycle-accurate simulators of parallel systems: impossible
@ behavioral simulations lack fidelity

@ real systems today (that exhibit exceptions) are rare and
precious
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Enter An FPGA Cluster

fully operational MPI solution with (re)programmable hardware
offers interesting (inexpensive) possibilities

@ targeted, reproducible fault injection
@ variable grain disturbance (down to cycle-level)
@ custom (exploratory) performance monitoring

@ analytics to suggest an exceptional situation has (or will)
occur

all (nearly) “Heisen-bug free” —
@ implemented in hardware
@ operating in parallel with functioning system

L 4
a\ r The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\\V/Z uNCCHARLOTTE 37/1

~—



What is Needed?

Administratively, a testbed with...
@ hardware fault (performance) injection based on a
probability distribution function (or trace?)
@ fault reproducibility (same physical bits flipped)
@ behavior reproducibility (app fails at the same place)
@ resilience middleware

@ plan for credible experiments/exploration

e What needs to be observed?
e How to aggregate data into actionable decision?
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Probes & Dials

@ a set of adjustable, composable, interacting hardware
components
@ Probes
e back-end components that sense specific events
(interrupts, messages, bus activity)
e front-end components that aggregate data (interrupts per
second, sliding windows, trigger on extraordinary situation)
@ Dials
e perturb running system
e adjustable at run-time (on/off, frequency, duration, etc.)
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Back-End Probes

PowerPC Trace Port (branches, system calls, etc.)
PowerPC interrupts

system bus activity

network packets (source, destination, size)
temperature

disk activity
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Front-End Probes

@ convert counts to rates (messages per second)

@ collect sliding window of data

@ convolution (e.g., edge detection)

@ artificial neural network (trained to detect “healthy” node)
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Dials

Performance Fault

@ system bus “cycle stealer” @ DRAM bit flipper
@ network bandwidth stealer @ corrupt floating-point

@ increase DRAM latency results

@ false interrupt generator @ corrupt data packets

@ down clocking (after CRC)
components
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Current Probes and Dials

@ PLB (system) bus “cycle stealer”
e master performs unnecessary reads or writes to a null slave
e adjust frequency of interruption
e adjust duration (repeated transaction) of interruption

@ PowerPC Trace port — collects 64MB of data

@ SDRAM bit flipper

o selects a random word of off-chip memory and flips one
random bit

e frequency is adjustable

o PRNG seed can be set at run-time

@ Count Interrupts and Convert to rate — period is adjustable
@ Sliding Window plus Edge Detector

L
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Experiment with Cycle Stealer

@ attach cycle stealer to degrade the performance of one
node

@ adds contention — does not always prevent processor

@ run NAS Parallel Benchmark (IS) on one node
@ Three questions

e What are reasonable ranges for frequency and duration
before node observes performance degradation?

o What are the effects on a 16-node system if one node is
degraded?

o Will the system observe the performance degradation
before the node?
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Experimental Set-Up: One Nodes
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Experimental Set-Up: Sixteen Nodes
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Increase in Execution Time while Varying Frequency

"duration=8e-7(s)" —— “duration=8e-7(s)" ——
"duration=3.28e-4(s)" ~x--- “duration=3.28e-4(s)" -
“duration=8.4e-2(s)" - “duration=8.4e-2(s)" -

Increase in execution time (%)
.
5

Increase in execution time (%)
.
5

001 01 1 10 100 1000 100001000001le+06 1e+07 00l 01 1 10 100 1000 100001000001e+06 1e+07
Frequency of interruptions(hz) Frequency of interruptions(hz)

one node sixteen nodes
percent increase in execution time of NAS Parallel Benchmark

IS as jireq iNCreases; juqy is fixed at 0.8us, 328us, and 84ms

L
‘ ' The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\\//Z UNCCHARLOTTE 47/1



Increase in Execution Time while Varying Duration

"1=0.025h2" —— "=0.025h2" ——
"f=0.05hz" "f=10hz" —x—

"f=1000hz" -
15 "“f=10000000hz" &

Increase in execution time (%)
.
5
Increase in execution time (%)
=
5
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0 4 - - ey 0
1e:08 1e07 1e-06 1e-05 00001 0001 001 01 1e:08 1e-07 1e06 1e-05 0.0001 0001 001 01

Duration of interruptions(hz) Duration of interruptions(hz)

(a) (b)

percent increase in execution time of NAS Parallel Benchmark
IS as ugyr increases; (a) one node and (b) 16 nodes

L
‘ ' The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\\//Z UNCCHARLOTTE 48/1



Interpretation

@ PLB system bus (plus PowerPC cache) is very resilient!

@ bus reads are lower priority and no slow down was
observed (results were achieved with writes)

e even with near saturation (approximately 9:1) bus
prevented starvation (only 20% slow down)

@ duration has larger impact that frequency
@ system was impacted by a single node failing

@ in some cases, system was impacted sooner than a single
node
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Other Probes and Dials

@ PowerPC Trace Port: we are gathering the data but not
sure how to decode it — documentation is very thin
@ Off-Chip RAM bit flipper
e works... increasing rate of error generally decreases time to
kernel panic/oops
e even though the bit flipping is perfectly reproducible, Linux

concurrency is not (so multiple runs and statistics are
required)
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Resiliency Work

@ Rahul Sharma
@ Nathan DeBardeleben
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Discussion

| will be with Nathan the rest of day...
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Why FPGAs?
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1. Power

@ every transistor (in the application-specific FPGA design) is
contributing to the solution
@ minimizes static power
e dynamic power is used for useful computation
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1. Power

@ every transistor (in the application-specific FPGA design) is
contributing to the solution
@ minimizes static power
e dynamic power is used for useful computation

@ slower clock rates: a design win
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2. System Integration

@ highly-integrated systems:

single Platform FPGA can be configured with processors,
system bus, peripherals, network interface, disk controllers
— all running Mainline Linux Kernel

fewer discrete components:
e lower power
e size advantages
o fewer points of failure
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2. System Integration

@ highly-integrated systems:

single Platform FPGA can be configured with processors,
system bus, peripherals, network interface, disk controllers
— all running Mainline Linux Kernel

fewer discrete components:
e lower power
e size advantages
o fewer points of failure

@ single memory hierarchy
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2. System Integration

@ highly-integrated systems:

single Platform FPGA can be configured with processors,
system bus, peripherals, network interface, disk controllers
— all running Mainline Linux Kernel

fewer discrete components:

e lower power
e size advantages
o fewer points of failure

@ single memory hierarchy
@ ability to use cheap, high-speed, custom networking
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3. Resources Are Fungible

@ we start with a super simple, bare bones design
(processor, memory, Ethernet, serial console)
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3. Resources Are Fungible

@ we start with a super simple, bare bones design
(processor, memory, Ethernet, serial console)

@ depending on the application or domain, add
special-purpose cores:

@ dexp (-x) — exponential decay is common in many
computer simulations of natural phenomenae

e MAcc — 16 x 16 array of floating-point units for BLAS

e scan — computationally intensive part of BLAST algorithm

@ On-Chip/Off-Chip Network AIREN — core-to-core
communication DMA access to 64 Gbps custom network

PNN, FFT, Convolution, Barrier/Collectives, HWF'S, Integer
Sort

*
a\ r The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\\V/Z uNCCHARLOTTE 56/ 1

~—



4. On-Chip Communication

@ FPGAs already have a tested, high-bandwidth
Network-On-Chip
@ configurability allows for novel operations

e computation-in-the-network
e disk/network integration (think: multi-disk filesystem that
spans cluster)
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